Climate Adaptation Science is Comprehensive, Landscape-level Research
Climate change is a major 21st-century challenge for science and society. In the American West, changing climate is increasing the threats of drought and fire. Such threats require both new science-based information and effective teams of scientists, managers, policy-makers and other citizens who can use that information to solve problems. Project research will advance understanding of changing hydroclimate (drought and flood), fire regimes (frequency, area burned, and severity), land cover (range shifts and invasions), social and economic effects, and potential adaptations (see examples below).
New Paper by CAS Cohort 1: The Impacts of Wildfire Characteristics and Employment on the Adaptive Management Strategies in the Intermountain West
Click to view the paper in the open-access journal, fire.
Public radio editor Jennifer Pemberton interviewed CAS Cohort 1 students about their research and the process of working as an interdisciplinary team.

With this perspective, we must then reassess our liabilities and plan development accordingly. While the authors acknowledge the well-documented risk wildfires pose to homes and structures, particularly those built in the wildland-urban interface, they highlight the less appreciated and underestimated risk that uncontrollable, high severity wildfires pose for water security. Further, they suggest that just focusing on the amount of area burning may not be enough to understand and address the issues. Low severity wildfire benefits forest health and poses less risk to water infrastructure, so the authors argue we actually need more areas burning under these conditions. This will require reducing restrictions on prescribed burns and ‘managed’ wildfires. Other forests naturally burn at high severity, and the authors argue that the best approach in these areas is to limit or eliminate development. The authors believe we can and must adopt more widespread and effective management strategies for our forest and water resources, but the critical first step will be realigning public perspectives about the past and future of wildfire.

Water- and Drought-scapes
Adapting the built-and-natural environments of arid and semi-arid ecosystems.
Water availability has significantly influenced development in the Western US. A legacy of cultural preferences, antiquated policies, and aging water infrastructure are confronted by population growth and prolonged and frequent drought. How would an extreme drought or anomalously short snow season impact terrestrial and aquatic ecosystems, water infrastructure and distribution, the agricultural and tourism-based economy? How can we ensure reliable water for humans and the environment? And what are the most vulnerable parts of the coupled human-environment system?
Disturbance-scapes
Integrating forest, fire, fish, and society for adaptation in the Interior West.
Many landscapes in the Intermountain West are characterized by disturbance (i.e., discrete events such as wildfire, flash floods, or mass deaths from pests or pathogens that can disrupt the structure of an ecosystem, community, or population and change resource availability or the physical environment. Climate extremes may cause interacting cascades of disturbance, and disturbed landscapes may have elevated vulnerability to changing climate extremes. For example, drought-related plant mortality may be a mega-disturbance that resets succession and releases resources for new generations of plants, but plant establishment and landforms both are vulnerable to post-disturbance conditions that can substantially reform the physical template of a landscape and may alter the long-term trajectory of an ecosystem.